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Abstract – Edge intelligence is a new technical framework that 

seeks to unify Artificial Intelligence (AI), mobile edge 

computing, and communications networks. It is widely 

recognized as one of the most important missing pieces of the 

present 5G network, and it projected to be one of the most 

aspects to next-generation 6G edge-AI. This article provides a 

self-learning infrastructure centered on self-supervised 

generative adversarial networks to illustrate how automated 

data synthesis and learning at the networking edge might 

boost performance. Our 5G-connected campus shuttle system 

serves as a test bed for our planned self-learning architecture. 

The results we obtained show that the suggested architecture 

may successfully identify and categorize novel services in edge 

computing settings. 

 

Keywords – Artificial Intelligence (AI), Service-Based 

Architecture (SBA), Machine Learning (ML) 

I. INTRODUCTION 

As part of this revolutionary shift in the wireless 
networking environment, 5G mobile technology is being 
rolled out with the potential to enable a plethora of cutting-
edge applications, such as driverless cars, Internet of Things 
(IoT), Virtual Reality (VR), and Augmented Reality (AR) 

[1]. In addition, development is beginning on the 6G 
wireless cellular network standard, which aims to provide 
not only a far enhanced data transportation system but also 
a highly autonomous and intelligent system with a focus on 
people. As can be seen in Fig. 1, use cases have progressed 
from 5G to 6G. 

Unique to 6G is the idea of pervasive AI, a highly 
adaptable framework that incorporates human-like 
intelligence into all network infrastructure components. The 
application of AI in 5G networks is already being actively 
pursued. The International Telecommunication Union 
(ITU)-T has launched a focus group concerning machine 
learning for next generation networking systems such as 5G 
“ML-5G” to advance the creation of a uniform architecture 
and the design of an interface for the efficient incorporation 
of Machine Learning (ML) into 5G as well as next-
generation networks. Functional modules that are inspired 
by Artificial Intelligence (AI) are being developed by 3GPP 
enhance and monitor the performances of Service-Based 
Architecture (SBA). Irrespective of the promising results, 
broad use of AI in wireless networks has been hampered by 
the following three factors shown in Table 1 below. 

 

Table 1: Factors influencing broad use of AI in wireless networks 

Factor  Impact  

Limited Resources Existing wireless networks often lack the required data storage capacity and processing power to 
run AI algorithms. 

A Dearth of Good-
Quality Labeled 
Data 

 

Most state-of-the-art AI systems need a massive quantity of labeled datasets for learning and 
machine learning. In addition, most of the dataset generated by wireless networks is in a raw and 
unorganized form. Labelling this kind of data manually is time-consuming and laborious. Data 
collected from wireless networks is inherently chaotic, with many factors influencing how much 
and how well-labeled information must be for model training and development. These include, but 
are not limited to, network topology, user mobility, hardware and software specifications, and 
geographical location. 

An Unoptimized 
Architecture for 
AI 

 

Wireless network architectures as they are now envisaged were not originally thought of with the 
goal of enabling applications and services influenced by artificial intelligence. Artificial 
intelligence (AI) solutions that are resource-intensive may place additional load on an already 
strained wireless network. Presently, there is no AI-native connectivity architecture that can 
simultaneously meet the needs of delivering AI services and those of supporting a growing number 
of mobile applications with ever-stricter requirements. 

 

A novel technological framework, edge intelligence 
aspires to bring together AI, communications systems, and 
mobile peripheral computing. Using edge intelligence, a 

large number of dispersed mobile edge servers can be set up 
to function and make judgements based on AI information 
and service requests in close proximity to their point of 20
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origin, paving the manner for the rapid and prevalent 
integration of artificial intelligence into the next era of 
cellular networks. As one of the most critical features 
missing in 5G, edge intelligence is generally identified as an 
essential enabler for 6G to attain the complete potentials of 

network intelligentization. In Table 2 we can see how the 
architecture, functional elements, major requirements, and 
applications of AI-enabled apps in 6G vary from those in 4G 
and 5G. 

 

Fig. 1: the evolution of use cases from 5G to 6G. 

 A variety of disruptive technologies, including those for 
spectrum exploration, devices and circuits, networking, 
computation, sensing, and learning capabilities, will need to 
be implemented by 2030 if we want to have any say in the 
creation of 6G use cases. Particularly, deep learning (DL) 
provides a game-changing approach to the physical, 
medium-access, and application layers of 6G wireless 
network design and optimization [2]. 

In particular, DL provides a novel strategy for 
developing the 6G air interface by simultaneously 
improving the radio ecosystem, communications 
algorithms, hardware, and software. This tendency has had 
an impact on applications in task-oriented communication, 
semantic communication, and combined source-channel 
coding. Machine learning (ML) promises a paradigm 
change by dynamically learning superior efficiency and 
quick optimization algorithms. This allows ML to be used 

to the problem of resource allocation in wireless networks. 
By further combining domain information (such as 
optimisation and conceptual tools) into the DL paradigm, 
ultra-reliable and low-latency communication systems were 
optimised. 

Machine learning (ML) strategies have been applied to 
problems in automotive application communications, 
connectivity, and security. As wireless data collecting, 
learning models and methods, and software or hardware 
platforms continue to improve, we anticipate that AI will 
become a natural tool for building revolutionary wireless 
technologies, therefore hastening the design, 
standardization, and commercialization of 6G. New 
learning theory, deep neural network (DNN) architectures, 
/specialized software, and physical hardware will all be 
influenced by the research and innovation of 6G wireless 
communication systems and communication theory. 

Table 2: Objectives of artificial intelligence in 6G, 5G, 4G  

 Cloud-centered AI – 4G  AI-based functionality – 
5G 

Edge-based AI – 6G 

Architectures   Component-based 
infrastructures  

Service-based architectures  AI-based edge-AI 

Functional elements Over the top artificial 
intelligence application 
applied in the cloud data 
centers delivered without 
the 4G network  

Preset functional modules 
to enhance and monitor the 
service-based architectures’ 
performance  

Seamless incorporation of 
edge competing and AI 
communications. 

Huawei’s 5G 

vision 

Machine 

visioning  

Extended 

reality 

Vehicle-2-

communications 
Positioning  

High-definition 

video uploading  
Holographic 

communications  

eMBB 

mMTC UCBC 

HCS 

URLLC 
RTBC 

RTBC – CAeC - eMBB 

Vision of 6G 
URLLC – 

HCS - 

EDuRLLC 
mMTC – COC - UCBC 

mMTC 

URLLC 
eMBB 

AR/VR 

Driverless 

cars  

Mission 

critical apps  

3D videos 

GB in a 

second 

Smart 

homes 

Industrial 

automation 
Smart city 

2020 5G IMT 
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Major requirements  Mostly deployed in unsafe 
applications  

Complex latency as well as 
reliability requirement in 
some applications such as 
URLLC 

QoE – assure with self-
learning, and self-
adaptation capabilities 

Application  Image and voice 
recognition-centered virtual 
assistant application  

Smart factory, VR/AR, 
driverless cars  

Self-evolving interactive 
communications 
(holographic), smart cities, 
humanoid robots 

 

It is projected that by 2030, there will be about 130 
billion inter-connected devices, all of which will be powered 
by massive-scale 6G network infrastructures. Consequently, 
it is critical to develop an architecture for autonomously 
collecting, classifying, and processing data in order to let the 
edge computing system to adapt and evolve on its own. 
Autonomous detecting, learning, logic, decision-making, 
adaptation, and growing without human engagement or 
hand-labelling is the goal of self-learning, an emerging topic 
under ML. It uses current breakthroughs in a broad range of 
AI approaches, involving self-supervised learning, auto-
ML, and self-taught learning, in order to performed 
automated label formation, representation learning, model 
construction and feature extraction.  

Scenario-based use cases have been suggested as a 
promising topic for future AI research. The fundamental 
contribution of this research is its elucidation of the major 
requirements and the trends, which will potentially propel 
edge-AI for 6G, mostly for ML perspectives. We 
recommend self-learning infrastructure and evaluate the 
potentials for addressing a number of most prevailing issues 
in 6G. To our understanding, this is the single research study 
to provide a wider review of self-learning and 6G 
application. To arrive at this ration, this paper has been 
organized as follows: Section II presents a critical review of 
5G and 6G. Section III discusses the requirements for edge-
native AI. Section IV introduces self-learning edge AI, 
while Section V discusses the self-learning architecture for 
edge intelligence. Lastly, Section VI concludes the paper 
with final remarks and future research directions.  

II. CRITICAL REVIEW OF 5G AND 6G 

A. Fifth-Generation Network’s Shortcomings 

As 5G network rollout grows to include more nations, 
experts weigh in on what kind of results users should expect. 
Let's start by looking at the pillars of 5G that are rapidly 
becoming outdated. Because of the widespread usage of 
small cells, system densification plays a significant role in 
5G. Nevertheless, as more and more base stations are 
installed, the returns on investment, in the form of better 
coverage and prompt data transfer rate, show dropping 
returns because of the vital increment in infrastructure 
expenses. Carriers may aggregate their resources to increase 
bandwidth for their customers. However, this calls for 
consumer electronics to support many frequency ranges. To 
get beyond the limitations of end-device technology, the C-
RAN (Cloud Radio Access Network) could be considered 
as a vital element of 5G. With the exponential growth of 
modern networks, however, it is becoming more apparent 
that computations at the fog and edge devices are also 
necessary.  

In addition, there is not enough security in the core 5G 
technologies to allow for wide-scale implementation, 

particularly in SDNs where there is no way to verify 
trustworthiness between both the software installation and 
the controllers. Network Function Virtualization (NFV) [3] 
may be disrupted if an attacker accesses an application 
architecture, such as the virtualized computing manager, 
and then uses that element to generate false logs. Also, 5G's 
"Ultra-Reliable and Low-Latency Communication" 
(URLLC) is a major feature. Nevertheless, there remains a 
lack of actual connectivity across the network (such as the 
core). Furthermore, 5G technologies are based on the 
concept of heterogeneous networks (HetNets), but at the 
present moment, this kind of network integration is only 
possible in terrestrial networks. In order to achieve genuine 
3D coverage, we must deploy mesh nodes in the heavens 
and beyond. It is also fundamental to remember that 5G is 
vulnerable to threats such as DoS (Denial of Service). Future 
networks may consist of billions of nodes; therefore, this 
will need to be considerably improved. 

1) Communication Speed and Scalability 
Between 2010 and 2030, global mobile traffic is 

projected to increase by 670x due to the proliferation of 
M2M connections. This unprecedented growth is 
motivating researchers around the world to find new ways 
to improve networking in many different areas, including 
spectral efficiency and energy conservation. Fig. 2 depicts 
how the 5G network, with its improved mobile broadband 
and massive machine-type communication capabilities, can 
support a wide range of machines. However, it is expected 
that 5G's capacity will be fully utilized by 2030, meaning 
that it will be unable to meet future demands. Rates of data 
transmission will need to increase dramatically to reach well 
over 1 Tbps (up to 10 Tbps) in fewer than 10 years. This is 
because the rate of information transfer depends on user 
demand.  

So, to effectively plan for the next generation of wireless 
networks after 5G, we need to look into technologies that 
could potentially deliver such speeds. Additionally, the mm 
wave range of 20-99 GHz is targeted for use in 5G 
technology. Nevertheless, phase frequency response, non-
linear power transmitters, and low Analog to Digital 
Connector (ADC) resolutions are just some of the 
limitations of transceiver design and computer attenuation 
methods that make it impossible to achieve such fast 
velocity in this range at present. The next stage in 
information exchange is likely to involve experimenting 
with frequency range above 100 GHz, potentially up to 
some THz, due to the abundance of spectrum available at 
these higher levels. While only 4 Gbps was accomplished in 
the 60 GHz range, it was shown in a contrast that accelerates 
greater than 100 Gbps may be attained in the 300 GHz 
frequency band. 

Because of the types of services that are still just 
becoming accessible or are projected to become widely 
employed in the next-generation, very high data rates are 

Authorized licensed use limited to: Aditya Engineering College. Downloaded on August 22,2023 at 04:58:10 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 

feasible. By 2020, services like AR, networked robotics, 
autonomous systems, human nano-chip implantation, and 
telemedicine are expected to be widely used. Billions upon 
billions of devices are projected to come inter-linked by 
2030, owing to a surge in M2M communications. Optimal 
performance trade-offs, however, are only expected for 5G 
networks with a billion or more devices. As a result, the 

network connection will be scaled in the next major upgrade 
to enable the record number of connectivity options and 
network load. 

 

 

 

 

Fig. 2: 5G networking pillars with their examples 

2) Link Latency 
Multiple real-time applications have evolved in recent 

years, and they will continue to be an integral element of the 
system for several years. The services might integrate 
anything from aiding in construction of smart cities, e.g., 
autonomous vehicles and industry 4.0, to establishing novel 
means of interacting with the environment, e.g., VR, 
prosthetic limbs and exoskeletons. Various real-time 
services are needing minimal latency in order to operate 
efficiently. In addition, various technology-based problems, 
e.g., cyclic prefix length within the OFDM system or the 
usage of specialized channels for machine communications, 
might induce latency deterioration owing to their erratic 
nature of transmission. 

Many applications in Industry 4.0 need concurrent 
sustenance for URLLC (Fig. 2) to attain completely 
automated operation without human intervention or 
oversight [4]. This has been considered in the most recent 
5G standards release; nevertheless, this functionality is 
restricted to basic motion control with a maximum latency 
of 1 ms. The needed latency for various applications e.g., 
motor controls, and intra-vehicle communications for 
engine controls and suspensions, in milliseconds and sub-
seconds (0.1 to 1 second).  

For optimum functioning, many of the prior applications 
had many stringent criteria. For certain instances, 
simultaneous compatibility for super-URLLC and high data 
speeds is required, as seen in autonomous systems. For 
example, for applications like managing factories applying 
virtual presence, this may correspond to round-trip latencies 
of 250 seconds (some publications even propose 100 
seconds) and a connection dependability of 109 at 10 Gbps. 
Over existing 5G standards, this will need 50-folds and 10-
folds advancement in reliability and latency, concurrently. 
Moreover, 5G purposes to issue a low latency for just shorter 
packages. Connection dependability, modifying latency and 
data rates for diversified application is not completely 
addressed in 5G, and it hasn't been done effectively yet. As 
a result, it's unclear whether 5G has all of the necessary 
components to build smart cities that can serve a variety of 

machine communication needs. This allows potential for 
future advancements, such as ensuring improved random 
access (RA) mechanisms for machine communications, 
effectively handling increasingly complex industrial control 
frameworks and attaining sub-milliseconds connection 
latencies. 

3) Link Reliability 
It's also crucial to discuss the connections’ reliability that 

is typically assessed by the FER (frame error rate) or BER 
(bit error rate). Various vital applications, e.g., vehicle-to-
everything (V2X) connections [5], management of railway 
systems, and automation technology, require ultra-reliable 
connection in order to guarantee low incident rates. It is 
suggested that certain applications for Industry 4.0 may 
demand a connection dependability of up to 109 on the basis 
of FER; nonetheless, 5G only claims to issue up to 105. As 
a result, the connection's dependability must be enhanced by 
many orders of magnitude in order to completely execute 
the notion of smart cities and generally trustworthy machine 
activities, e.g., distant surgery. For optimal resource 
allocation, B5G systems will need to provide improved 
dependability at various levels. Link availability, which is 
synonymous with link dependability, is predicted to be five-
nine or 99.999 percent of the time in 5G networks; however, 
control and automation in a given manufacturing 
configuration will need service presence to be 99.9999 
percent. Furthermore, some studies went so far as to say that 
service availability for 6G networks must be seven-nine or 
99.99999 percent. 

B. Sixth-Generation Network’s Aspects 

Multiple new standards, needs, and possible applications 
are expected in the next generation of wireless technologies, 
known as 6G. The researchers examined 6G from a variety 
of perspectives, based on the hierarchy below: A broad 
overview of issues of communications from social, 
technological, and economic perspectives is included at the 
highest level. The medium level summarizes the key aspects 
of network needs, such as services, technology, and research 
issues. Finally, at the most fundamental level of the 
methodology, the researchers examine the network's 

Pillars of 5G 

mMTC eMBB URLLC 

IoT AR 

Cloud 

computing  

Internet surfing  Smart cities  Automations  Robotics  

Industry 

4.0 

Authorized licensed use limited to: Aditya Engineering College. Downloaded on August 22,2023 at 04:58:10 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 

technological operation developments, e.g., updated radio 
frame systems and modified RA algorithms. Fig. 3 further 
elucidates the researchers' method to describing 6G. 

 

Fig. 3: A graded method for the evaluating of 6G’s features. 

1) 6G Network’s Footprint 

a) Social Impact 

The field of communication networks has a number of 
understudied areas. Among these are the rights of users to 
access their own data, the pricing structures of service 
providers, and the general public's understanding of the 
value of data sharing at both the group and individual levels. 
For their potential to shift public opinion on delicate matters, 
these factors have great societal value. A controversial 
British political consulting company, known as Cambridge 
Analytica, achieved success to data via Facebook’s open 
API, and integrate it with some publicly available data, e.g., 
that from only transactions, and social networking site, in 
order to compile more than 5,000 data points onto 290 
million Americans. It was speculated that the information 
played a role in deciding the US presidential election. One 
more case in point is the standard method of spectrum 
allocation, whereby governments sell access to specific 
frequency ranges at auction. This has far-reaching 
repercussions, including higher costs for end users in the 
form of data plans, communication services, and hardware. 
Therefore, it is essential to propose new spectrum regulatory 
rules and reevaluate data access options.  

In addition, the Digital 2020 July Global Statshot Report 
estimates that 4.57 billion people, or slightly more than half 
of the world's population, have access to the Internet. 
Connecting the world and prioritizing the installation of 
network infrastructure in developing countries with the 
lowest Internet penetration rates is a further challenge for 
6G networks. This will be more apparent than ever in 2020 
thanks to the effects of COVID-19, which essentially made 
the entire world switch to digital operations. In order to fully 
realize the objectives of viewing the aspect of connectively 
as a standard right for users, it is essential that efforts to 
expand the Internet account for disparities in the cost of 
living around the world. Providing nearly free data plans and 
enhancing device leasing are two means to attaining this 
objective. Novel internet services must consider human’s 
variations make an effort to bring them together under one 
umbrella in order to overcome the global language and 
cultural barriers that currently exist. That is to say, it is 
important for network services to take into account the 
specifics of the geographic region serving as their primary 

market. An extremely visible example of this is found in 
Google Maps, where users in different locations see 
disputed territories assigned to different countries. 

b) Technical Impact 

With the exponential growth of technology over the last 
30 years, the digital world's future is more promising than 
ever. It is anticipated that the most cutting-edge innovations 
will be available on the sixth-generation network. The 
succeeding sections of the study focus on the research team's 
elaboration of the most significant new technologies. Here, 
however, the researchers provide a sampling of the ways in 
which the digital landscape has undergone significant 
transformation. In 1938, the first binary-based computer 
was introduced, ushering in a path of development that 
continues to this day in the form of integrated circuits (ICs) 
capable of doing billions of operations in less than a second. 
A whole new method of computing, the Q-bit, grounded on 
quantum physics, is on the horizon. To put it simply, this 
idea proposes inspecting the state of electrons in wires in 
order to decode information encoded by a transmitter. Such 
computing has the potential to radically alter the digital 
landscape by allowing for hitherto impossible levels of 
performance and the introduction of novel network services. 
Integrating artificial intelligence onto the worldwide web is 
another case study worth considering. 

By introducing various ideas, e.g., system management 
or self-sustainability and automated frameworks in cars, 
industry and various other settings, AI is altering how end 
devices understand communication networks. Many 6G 
applications and innovations are anticipated to have AI at its 
core, and it is anticipated that these services and 
technologies will be so sophisticated that humans will not 
be required to interfere in the operation of the network in 
any way. When AI reaches its full potential, it will be able 
to evaluate human emotions for a variety of uses, including 
improving the user experiences during human–bot 
interactions and using facial input from individual users to 
personalize their online content and advertising. Virtual 
reality (VR) is a foundational technology [6] for many 
existing and emerging network services, and its widespread 
adoption is expected to fundamentally alter how people 
experience and interact with their environments. During the 
recent COVID-19 pandemic, for instance, VR was 

6G 

footprints  

Network 

requirement  

Technical 

developments  

Social impacts  Technical impacts  Economic impacts  

Research issues  Technologies  Services  

Random access  Cell-free network 

Edge computing  

AI in networks Frame designs 
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employed for remote medical staff education and treatment 
of a patient, including VR-based neurocognitive treatment 
and telehealth services. 

c) Economic and Environmental Impact 

Especially hazardous waste from electronics, which may 
have a significant effect on the economy and the 
environment, is often disregarded. For instance, batteries 
contain toxic substances that would be bad for the 
environment if they were left out in the open. With the 
advent of 6G, widespread application of energy collecting 
through wireless waves or the laser beam in order to 
objectify battery-free gadgets is anticipated as a result of the 
technology's potential for innovation. Additionally, the 
yearly rise in electronic waste is at least in part due to the 
exponential growth in the number of Internet-connected 
gadgets. For instance, the quantity of electronic trash 
produced annually throughout the world has risen 
dramatically in recent years, from 14 million tons in 2005 to 
42 million tons in 2014 [7]. The weight of all the electronic 
garbage discarded in 2017 was equivalent to seven trips to 
the Moon and back, or almost 11 times the weight of the 
Great Pyramid of Giza. Because of the prevalence of toxic 
substances like mercury, arsenic, and chromium in mobile 
devices and computers, the trend toward ever-increasing 
numbers is cause for concern. Consequently, it is necessary 
to highlight electronics reprocessing in the global 
telecommunications regulations of 6G, to improve the 
efficacy and effectiveness of the removal process, as well as 
to inform the public so that they may make active 
contributions to recycling. Chips made from 
environmentally friendly biological components like 
microorganisms might be one strategy for decreasing 
electronic waste and facilitating recycling with safer 
alternatives. One further possible upside of using green 
biological materials is that they could need less power to 
manufacture. 

Meanwhile, the health risks associated with the 
widespread adoption of higher and higher carrier 
frequencies receive scant consideration. This was 
demonstrated in [8], which argued that millimeter waves 
pose thermal dangers to humans because they generate heat 
due to radiations. In the transition from the mm-wave to the 
near-THz zone, there is a corresponding increase in the 
degree to which we cannot know the hazards to human 
health and the safe levels of radiation exposure (100-900 
GHz). The goal of the study cited in [9] was to identify the 
lowest possible exposure to terahertz radiation without 
causing adverse effects on human cells and tissues. The 
long-term effects of high-intensity terahertz radiation on 
human skin fibroblasts have also been studied [10]. The 
impacts of terahertz illumination on human anatomy and 
biomolecules are detailed in [11], and experiments were 
conducted utilizing a wide range of terahertz sources of 
varying intensities. Effects of terahertz radiations onto the 
human skin and its possible therapeutic usage in skin tissue 
were studied in detail in [12]. Additional research is required 
to establish effective standards and strict guidelines for 
producers of communication devices. Although 
technological advancements in networking have brought us 
closer together than ever before, they have also isolated and 
saddened many individuals. This has far-reaching 
consequences for people's mental health. In light of the 
sixth-generation network's promise of longer immersion 
experiences through novel means like nano-chip implants, it 

is imperative that we conduct in-depth studies to assess the 
gravity of the resulting socioeconomic disorders. 

Since using very high frequencies results in limited 
coverage, the terahertz frequency range for communication 
should also be explored. Because of this, terahertz 
frequencies can only be used for communications within 
buildings. Moreover, tiny items, such as furniture or moving 
persons, may block terahertz waves, further limiting their 
application and utilization. For example, research presented 
in demonstrated that terahertz frequency bands integrated 
with ultra-dense BS (base stations), wideband antenna array 
with a relatively tiny wideband, and a restricted intensity of 
omni-directional nanotech are capable of reducing this 
impact by boosting coverage. 

2) Network Requirements 
Some of the network needs mentioned below, like edge 

computing, and network slicing, are already the subject of 
research on 5G and beyond 5G. Yet, investigation into these 
aspects of networks is in its infancy, and much remains to 
be done. Therefore, it's likely that it won't be until after 5G 
networks are in widespread use that these features can be 
used effectively, efficiently, and on a large scale. 

a) Services 

Many new kinds of services are expected to appear in 
the not-too-distant future to fill the needs of the twenty-first 
century. Here, the researchers highlight some of the most 
talked-about new services. It's anticipated that augmented 
and virtual reality (XR) will usher in a new era of human-
environment interaction. Both augmented and virtual reality 
hold great promise for a wide range of uses, including 
improving safety in hazardous situations like driving by 
superimposing warning symbols and instructions on the 
road ahead. XR can also be used to give us more agency 
over our physical environments, like smart homes and 
workplaces. It is anticipated that holographic 
communication will enhance the interactive experience and 
provide novel means of interacting with one's surroundings. 
Holographic communication, for instance, can be used to 
make a dialogue between humans feel more genuine, as seen 
in applications like telepresence and the translation of 
speech into visual representations of concepts. Academic 
institutions, which are based majorly on virtualized open 
and distance learning in real-time are one example of how 
XR and holograms correspondence are expected to 
profoundly impact the future of education. 

III. REQUIREMENTS FOR EDGE-NATIVE AI 

In terms of the future of networking intelligentization, 
6G will have a significant impact on data collecting, 
transport, analysis, training, and service delivery. The next 
iteration of edge-native AI initiatives has to meet potential 
requirements by 6G, which are discussed below. 

A. High-Efficient AI 

1) Resource-efficient AI 
Optimizing the data-transfer capacity of wireless 

resources like networking and spectrum equipment is a 
primary concern for traditional wireless networks. The need 
to evaluate, quantify, and optimize the additional resources 
needed to carry out AI-based activities such as data 
coordination, model development, computing, caching, etc., 
is growing as more computationally demanding and data-
driven AI features are implemented in 6G. While it is true 
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that methods of artificial intelligence like deep 
reinforcement learning, transfer learning prototypes, and 
federated learning can significantly cut down on 
communication overhead, these methods may still require a 
significant number of resources when compared to the 
majority of data-based applications. There is also a 
restriction on the kind of learning challenges that may be 
addressed by these techniques. 

2) Data-efficient AI 
A big enough high-quality annotated dataset in every 

possible wireless channel and network architecture may be 
difficult to collect, as was previously mentioned. This is 
particularly true when comparing wireless systems to 
computer vision applications. The design approach should 
give top priority to self-learning technologies that need little 
or no hand-labeled data. Significant progress has been made 
in developing AI systems that efficiently use data. The self-
supervised method takes use of both unsupervised and 
supervised AI algorithms, establishing labeling on the fly 
from the raw data for certain pretext goals and then using 
that labeling to formally train the representations. Although 
these methods show great promise, they are still in their 
infancy and can only be used for a limited set of realistic 
endeavors at the present time. 

B. Scalable, Distributed and Decomposable AI 

1) Decomposable and Scalable AI 
Edge computing is a decentralized structural design 

made up of a large number of network edges with diverse 
simulation and prefetching capabilities and energy and 
dimensions limitations, whereas a high-performance cloud-
based data hub is typically constructed on the centrally 
managed design and architecture with a central hub fully 
supported by interconnected hardware and software 
components. Edge services may be developed using a wide 
variety of operating systems and hardware architectures 
(such as Android, Ubuntu and Windows), and they could be 
distributed and maintained by a wide variety of service 
operators (RISC, ARM, X86). It is fundamental to provide 
a data and activity processing infrastructure that is both 
extensible and decomposable to enable the concurrent 
execution of operations that traverse both the internet and 
multiple edge servers. It's possible that peripheral devices 
and apps might benefit from the same network 
softwarization practices. Multidisciplinary hardware / 
software systems may be virtualized into a collection of 
virtual elements to carry out a variety of AI-related 
operations. 

2) Distributed AI 
There are many obstacles that must be overcome before 

edge intelligence can be widely adopted, not the least of 
which is the development of a simple, modular, and 
distributed AI strategy that will enable a substantial 
percentage of geographically distant network edges and 
cloud-based data centers to perform the same set of 
computing functions in concert. Federated learning as well 
as extension-based technologies are quite trendy right now, 
and this has piqued a lot of people's interest in distributed 
AI. However, both monolithic AI and federated learning are 
still in their infancy and have a long way to go before they 
reach maturity. Future decentralized AI-based 6G 
applications and services are expected to rely heavily on the 
federated learning-enabled infrastructure. 

C. Human-In-The-Loop AI 

1) Personalized AI 
Because it will enable robots to properly understand and 

adapt human inclinations, personalized AI will contribute 
significantly in 6G. There are two different approaches to 
AI with a human in the loop. As a primary principle, we 
should try to use our best judgment whenever feasible. For 
instance, when a self-driving car encounters an unexpected 
situation or is unable to make a safe driving decision, it may 
hand over control to a human driver so that the AI program 
may draw on their superior reasoning abilities. The alternate 
approach has the agents factor in what they've learned from 
their interactions with people so far. 

2) Human-centered performance metrics 
It is not sufficient to optimize traditional performance 

metrics like bandwidth, network capability, and 
convergence speed when assessing and monitor the 
effectiveness of 6G and AI. The rising relevance of 6G and 
mobile networks makes it all the more important to define 
new metrics for evaluating the economic and social impacts 
of the integration of AI and 6G. 

IV. SELF-LEARNING EDGE INTELLIGENCE 

By enabling autonomous model production, learning, 
and development in reaction to variations in data 
characteristics and circumstances, self-learning edge 
intelligence may drastically reduce the amount of human 
effort required for data processing and model construction. 
For 6G self-learning edge technology to be practical, the 
following requirements must be satisfied. 

A. Minimized/No Human Effort 

It is widely agreed that the advancement of edge 
intelligence will depend on the widespread adoption of self-
learning AI systems that require minimal human 
involvement in the form of manual information processing 
and labeling. Self-supervised training and formative neural 
network models, e.g., Generative Adversarial Networks 
(GANs) [13], offer an intriguing solution for training 
models with data that is artificially labeled but generated by 
the models themselves (VAEs). Next, we present a GAN-
based architecture that does not require human supervision 
as well as provide a scenario study that shows how 
automatic pseudo-labeling and information synthesis can be 
used to discover and categorize new services. 

B. Automatic Model Construction and Search 

It is well-known that each Machine Learning (ML) 
system and algorithm has its own unique architecture and 
often includes a suite of complex techniques or empirical 
recommendations for building and honing the model. The 
field of research identified as AutoML (automatic ML) has 
only been around for a short period of time. The goal of the 
automated comparison tool AutoML is to expedite and 
normalize the search for appropriate machine learning 
frameworks and models. Both commercial enterprises and 
academic institutions have shown keen interest. 
Implementing self-learning ambient intelligence digital 
infrastructure requires the creation of efficient but simple 
AutoML solutions. 

C. Self-adaptation and Self-evolution 

The vast majority of present-day AI techniques base 
their decision-making only on the results of a previously 
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learned model or policy, which assumes that the systems 
context will stay static throughout time. For example, 
supervised learning, one of the most well-understood but 
sophisticated AI techniques, necessitates training 
information that has been precisely labeled, and for which 
the operator has a complete comprehension of all possible 
patterns. These approaches can't keep up with changing 
conditions. Digital training and reinforcement learning-
based techniques that attempt to optimize the long-term 
reward might assist solve the aforementioned problems. 
AlphaGo, developed by Google, employed deep learning 

approach to surpass the globe’s top human Go players. In 
addition to responding to a variety of known conditions, 
self-learning edge AI ought to be able to apply the 
knowledge in the face of uncertainty. Data synthesis is more 
likely to succeed when used to the problem of discovering 
and classifying novel, unexpected scenarios from a 
restricted amount of real-world dataset. The following 
section will show how we might surpass traditional 
clustering methods by synthesizing data in novel ways to 
better identify and classify already-known services. 

   

 

Fig. 4: An interlinked vehicular model for assessing the performance of our projected self-learning infrastructure 

V. A SELF-LEARNING ARCHITECTURE FOR EDGE 

INTELLIGENCE 

For 6G to be successful, it is essential to have an edge 
computing solution that is both easy to implement and 
capable of adapting to changing conditions on its own. In 

this contribution, we present a modest self-learning 
architecture to illustrate how a distributed edge computing 
system may possibly outperform current approaches to 
unidentified service traffic prediction and classification. In 
this research, we put our proposed architecture to the test in 
a number of real-world scenarios, using the inter-linked 
vehicular model as a case scenario. 

 

Fig. 5: Classifications performance of the projected infrastructure  
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Fig. 6: JS-deviation between real and synthetic data for S1 and S2 under various data sizes of S2 

A. Self-learning Architecture 

Specifically, we offer a novel framework based on self-
learned GAN have autonomous generators, which can 
autonomously learn features and generate ML models to 
detect and categorize previously undiscovered applications 
from raw crowdsourcing data scattered across a vast 
geographical region. To correctly depict the diverse nature 
of traffic data produced by multiple services situated in 
different parts of the broadcast area, our suggested 
architecture makes use of the GANs concept's generative 
learning capability, wherein several generators are taught to 
generate synthetic data. By incorporating a classifiers whose 
objective is to increase the allocation distinction (e.g., as 
evaluated by Kullback-Leibler (KL) Deviation) [14] 
between measurements of simulated data created by various 
generating units, we demonstrate that it is possible to learn 
each system to generate sample data of simulated data with 
similar dispersion as  the prevailing traffic data based on 
every service. The next stage is to create pseudo-labels for 
the fake data output by each generator using the self-
supervised learning approach. To detect and categorize data 
over the full service region, a deep neural network models 
will be trained using these false labels. 

The suggested scheme differs from traditional GANs in 
that its discriminators should concurrently establish (i) 
whether or not the data is fake, and (ii) where the generator 
of datasets is linked with. Generators may be taught to 
generate sequence data that are very close to the authentic 
recordings, even though it has no knowledge of these 
mechanisms. The equilibrium point is reached when the 
generator and classifier optimize mutually exclusive 
functions. Distributing the generators and classification 
techniques of the proposed system across multiple edge 
servers allows for the model to be trained using a variety of 
subsets of the data, reducing the computational load on any 
one server. Transfer learning could be used to take 
advantage of the data and models generated by other users 
or network nodes, lowering the computational burden of 
learning our GANs-inspired design. 

B. Application Scenario Performance Evaluation 

We put our suggested architecture to the test by 
simulating a latency-sensitive interconnected vehicular 
architecture composed of six campus vehicles connected to 

two network edges and a cloud-based database servers 
through a 5G connection. To track the latency of data 
transfers on 5G networks connecting moving vehicular 
systems to associated edge servers and a cloud datanbased 
server from a key service provider, we developed a 
dedicated smartphone app, as shown in Fig. 4. To achieve 
this, we run a simulation of the interactions between two 
anonymous, parallel automobiles (S1 and S2) that have 
different tolerances for delay. Only Service S1 in our catalog 
is totally dependent on the geographical location of the 
nearest edge server to the end user. S2 is a hybrid edge/cloud 
service because its processing is split between the cloud and 
local nodes. We assume that vehicles only have access to 
aggregated data on service latency and cannot distinguish 
between delays caused by slow edge servers and those 
caused by the cloud. The suggested self-learning 
architecture uses a single classifier and two generators to 
classify latency metrics related to different services. Two 
services, S1 and S2, coexist and communicate data in varied 
degrees, and we look at what happens when they do so. 

We contrast the rand index (RI) of our framework's 
clustering remedies to that of current systems like k-means 
whenever the dataset samples of service S2 change in order 
to assess the efficacy of our proposed architecture for 
service classification (see Fig. 5). While there are fewer data 
samples for service S2 in the combined dataset, the RI of our 
proposed architecture is still very close to 1. (the probability 
of a wrong clusterinng choice is nearer to 0). By calculating 
the Jensen-Shannon (JS) deviation between the distributions 
of real and synthetic data, we can evaluate the accuracy of 
the synthesized samples of data produced by our 
infrastructure (see Fig. 6). Employing our recommended 
model, we discover that the dividends of the synthetic data 
for both solutions are very close to the distribution functions 
of the real data for both services. Our suggested architecture 
eliminates the need for a physically labeled dataset by 
classifying unidentified solutions from a broad range of 
service metadata. 

C. Potentials to Meet 6G Requirements 

To make it possible to meet the wide array of 6G 
requirement, the above self-learning architecture might be 
modified. 
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1) Highly-efficient Edge-AI 
In the aforementioned design, the deep generated neural 

network's main purpose is to generate artificial 
information/data, which mimics the features of critical 
service data. This eliminates the need to collect a huge 
quantity of well data points for every service over the whole 
area of coverage. Both the amount of data uploaded by users 
and the amount of network traffic may be greatly decreased 
if synthetic data can be created remotely on the edge server. 
In this exploratory work, we also discover that the 
supercomputing intricacy of every network edge to 
undertake the self-supervised GAN methodology is limited 
when the dataset dimensions and diversity among network 
edge are limited. This is the case when each edge node 
encompasses a narrower range with a diminished service 
demand. 

2) Self-evolution and Self-adaptation at the Edge 
Due to differences in software solutions, application 

situations, user desire, etc., the statistical aspects of datasets 
acquired by various devices might vary greatly. The self-
learning infrastructure creates simulated data that accurately 
replicates the dispersion of the initial source data input and 
could mechanically adjust to alterations in data kinds and 
feature interplay. New advances in combining several 
cutting-edge AI techniques, such as semi-supervised 
learning, federated learning, transfer learning, 
reinforcement learning, and autoML, have the potential to 
increase both the breadth and depth of solutions for self-
learning design. 

3) Applicabilities of Human-In-The-Loop AI 
Taking advantage of human users' prior acquired 

wisdom and most desired services has the potential to 
further improve the efficacy of the aforementioned 
architecture. Particularly, the self-supervised learning 
approach can benefit from direct use of human expertise or 
any other kind of background information to provide 
supplementary pretext tasks, leading to even enhanced 
efficiency in the self-learning domain. Agents or framework 
elements can learn from their interactions with humans and 
adapt to their environment using this architecture. 

VI. CONCLUSION AND FUTURE RESEARCH 

There will be a variety of attacks made against AI-
enabled 6G, all with the same aim in mind: to reduce trust 
in the system's capacity to learn from data and make 
decisions. Building resilient self-adaptive systems is 
essential for successfully learning, identifying, and 
countering these threats. Data obfuscation and poisoning 
attacks are rampant, and there are no existing viable 
countermeasures to stop them. Inputting the stolen data into 
a self-learning system designed to withstand several types 
of assaults is one approach. With a thorough understanding 
of how these attacks affect model learning and data 
processing, network providers might use replay-with-
simulating and other existing technologies to safeguard the 
trained model. Within the framework of autonomously 
learning AI, this paper provided an introduction to a 
potential direction for future study of 6G edge intelligence. 
We are aware of the potential requirements and challenges 
associated with implementing edge-native AI in 6G. To get 

around the fundamental difficulties of incorporating AI in 
cellular interconnection, such as a lack of annotated data, a 
lack of suitable resources, and a dearth of an AI-optimized 
configuration, we tackled a self-learning framework that 
supports autonomous data learning and perception at the 
network's edge. We test our recommended self-learning 
architecture using a campus transport system that 
communicates with edge processing units via a 5G network. 
Our research shows that our suggested architecture may 
significantly boost the effectiveness of data categorization 
and synthesis for unidentified applications in an edge 
intelligence system. Other innovative and tough concerns in 
6G edge intelligence, and how self-learning AI may help 
with them, are also covered. We anticipate that this study 
will serve as a jumping off point for researchers interested 
in the future of self-learning and its potential applications in 
6G technology at the network's periphery, the edge. 
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